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1, Introductio

Let C be a circle with circumference equal to one. (For notational

convenience, we frequently identify C with an interval of length one on the

real line.) For probability measures on C we will define orderings (< such

that I.1"F 2 means roughly that pI is "more uniform" than F2 or that IL2 is
"more clumped" than Fl. Distributional orderings on the real line I have
proven to be very useful in many areas of probability and statistics and it is

hoped that orderings on C will also prove to be of some use. Later in this
paper we shall present applications of the orderings (< to the following
aieas: random co-erege problems on the circle, the distribution of spacings,
and the analysis of directional data. In this section we shall motivate and
define the orderings and present some of their basic properties.

To define the orderings we need the following notation. Let U be a

random variable uniformly distributed on C. A random arc on C having
length b and clockwise endpoint U will be denoted (U,U+b). For any

probability measure p. on C and length bc(0, ) we define the random
variable D(jL,b)-p.(1U,U+b)). Please note that throughout the paper we shall

use g. (perhaps with a subscript or superscript) to denote a probability

measure on C.
Our orderings have the form p.,<<I 2 if and only if D(.l,b) is "less

variable" than D(p.2,b) for all b(O,1). To motivate this type of definition we

note first that

(1.1) ED(.,b)-b forallp~andallbc(0,1).

(See Section 5 for a proof of this; all proofs are given in Section 5.) Now

consider the two extreme cases: let I be the uniform distribution on C and 8x

be the degenerate distribution which assigns all its mass to an arbitrary

point x cC. Clearly D(,,b) - b with probability one and

0 with probability I-b, .'3'lon For

D(62 .b) - I with probability b. ij

For distributions on 10,11 with mean b, these are the two extremes with
respect to variability. This suggests using the "variability" of D(Ilb) to
measure the "uniformity" of p.. , . ,

Av ol .: t
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Using two different notions of "variability" we obtain the orderings
<< and << defined as follows:
V C

I1 ( (F2 if Var(D(itl,b)) I Var(D(h.2,b)) for all bE(0,1).

Ft (( 2 if EY(D(pi.,b)) - EY(D(p 2,b)) for all convex functions 4F
C

and all bc(0,1).

The letters v and c have been chosen to remind us of the words "variance"
and "convex". Using (1.1) and the fact that Y(i)-x2 is convex we obtain

(1.2) R1 " 2 implies N ( P2
C

In order to vindicate the above definitions, we shall now list some
basic properties of the orderings. These properties are, for the most part,
ones that any reasonable "uniformity" ordering ought to possess. The
properties hold for both << and (<, so they are stated without the subscripts

V Cv and c.

(1.3) . << Ft < 6x for all it. Here I is the uniform distribution and 6X is
a point mass at x.

(1.4) F. I "F2 and F2 < P3 imply I << P3 .

Convolution of measures on C can be defined as follows. Identify C
with the interval 10,I). If X and Y are random variables with probability
measures F. and k respectively, then the convolution t is the probability
measure of (XY) mod I . Intuitively speaking, the operation of convolution
smooths distributions and makes them more uniform, so that it is natural to
have

(1.5) Fst << for all probability measures F. and t on C.

In this paragraph, we shall identify C with the interval (-1/2, 1/2). A
probability density f defined on C is said to be symmetric and unimodal if
f(x)-f(-x) for all x and f is nonincreasing on the interval 10,1/2). Let I and

F2 have densities fI and f2 respectively. If f, and f2 are symmetric and
unimodal, and f2 is "more peaked" about zero than f I, then it seems
reasonable to say that t is more uniform than F2, and we can indeed show
the following:
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(1.6) If fI is symmetric and unimodal and

f f(u)du < J f2(u)du for 0 (< I(1/2, then N ((< P2
-

-I -I

(It turns out that we do not need either symmetry or unimodality for f2 . but
this is not very intuitive.) Here, we are using "more peaked" in the same
sense as Birnbaum (1948).

Finally, we note two convexity properties. The quantities p1 , ".
are nonnegative and sum to one.

n
(1.7) If "< Lfor all i, then YpiILi <<IL.

i-I

n
(1.8) If <<(I-) + kj for 0 < < I andalli,then p<<  NP

i-I

2. Orderft Wb u ete DL -buUons

In this section we give explicit conditions which allow us to verify
whether or not the orderings << and <( hold for some simple types of discrete

C V
distributions. In particular, these conditions allow us to compare empirical
distributions so that, given two samples each containing n observations on C,
we can determine if one sample is more uniformly dispersed than the other.
For future convenience we define Sn to be the set of vectors (x ,2,...xn)

n
satisfying jx . I and xi > 0 for all i.

i-nI

Suppose a measure L has n atoms each having a mass of I /n , that is, p
is the empirical distribution of a sample of n observations. Then i. is
determined (up to a rotation) by the vector x(xl,x2 .... xn) f spacings
between consecutive atoms and we shall write F -SP(x). More precisely, for
any vector x c Sn, we define the probability measure SP(x) on C (identified
with (0, ) )by

in-Ii

SP(x -u- ,. where u,-O and u, - lik for I _ i _ n-I .

i-O k-!I
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Now consider a measure p having n atoms (of varying masses) equally
spaced around the circle C so that consecutive atoms are separated by the
distance I/n. This measure p is determined (up to a rotation) by the vector
x- (xjx 2,....x n ) of probability masses for the consecutive atoms and we shall

write p -PM(x). More precisely, for any vector I CSn, we shall define the

probability measure PM(x) on C by

n-I
PM(x) .

i-O

The names SP and PM are intended to remind us of "spacings" and
"probability masses" respectively. The measures SP(x) and PM(x) are
inverses or duals in a sense to be developed in Section 3 so that by the result
(3. 1 ) we obtain

(2.1) SP(x) <SP(y) if and only if PM(x) << PM(y).
C C

We now present a condition on x and y which is necessary and
sufficient for SP() <SP(y). This condition is stated in terms of the

C
majorization ordering for vectors which is treated at length in the books by
Hardy, Littlewood and Polya (1952) and Marshall and Olkin (1979). For any
vector (110x2.xe), let 1 (I),x(2)... (n) denote the coordinates arranged in

increasing order 1(1) 1 1(2) 1-4 1(n). If two vectors x and y in Rn satisfy

n n n

xj - Y and ix:j) < JYll) for 2 -<k < n ,

iW i1l i-k i-k

we say that x is majorized by y and write x I y.

For any vector x -(x*x 2 .... g)cS and integer k with 0 < k _ n we

define the vector 1 (k) - (k),1 (k) by
I 2( for alli.

i-O

Here the coordinates of x are considered to be arranged in a circle so that
n,j - x, for all i. Note that 1 ) - x, x(O) - (0,0,...,0) and x(A) - (,1,.). Our

condition can now be stated. For x and y in Sn ,



(2.2) SP(x) <<SP(y) if and onlyif x(k)-y~t) for I _kn-1
C

The relationship (2.1) becomes false upon replacing <' by < , so we
C V

must state separate conditions for SP() <<SP(y) and PM(x) <PM(y).V V

These are now given. For x and y in S n,

(2.3) PM(x) <PM(y) if and only if

na

E(X~))2< (yM)2 for I.,k 1 a- I , ond
i-1 

i- i

(2.4) SP() << SP(y) if and only if

(x~t x(2 .... ( a (y(1)y(2) ..... y(-0)).

Here (x(t),x(2),... (O-l)) denotes the vector obtained by joining (stringing
together) the vectors x(01(2),...(n-t) into one long vector having n(n-l)
components.

It is straightforward to check the conditions (2.2), (2.3) or (2.4) for
any given x and y in Sn, so these conditions are useful in constructing
counterexamples like the following. Let x - (.3,.3,.2,.2) and y - (.55,0..45,0).
We can easily verify that SP{z) <SP(y) is true, but that both SP(x) <SP(y)

V C
and PM(x) <PM(y) are false. This shows that the orderings << and << are

V C V

in fact different and also that the relation (2. 1 ) becomes false upon replacing

1< by ". Similarly, with s - (.4,.I,.4,.1) and t - (.55,.15,15,.15) we find
that PM(s) < PM(t) is true, but that SP(s) "SP(t) is false.

VWe wish to note one more counterexample. Let

-SP(12 1,23.2,13)) and L2-SP 1,23,1,3,2)).

It is easy to verify that both p < L2 and p2 < F, are true. The measures

F, and P2 are not equivalent in any obvious sense; neither measure can be
made to coincide with the other by using rotations or reflections of the circle.
Thus << is not a legitimate partial ordering; it satisfies the transitive

C

property (1.4), but not the anti-symmetry property.
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3. The peevaiuon of Orderfngs by Inverses

For any measure It we define an inverse (or dual) measure It' as

follows. Identify C with 10,I) and let the random variable U be uniform on
10, 1). The random variable X-=([O,U)) can be regarded as a random point on

C so long as 0 and I are taken to represent the same point on C. Define II
to be the probability measure of X. If IL has no atoms and has support on all

of C, then the function F(x) = pt(10,x) is invertible and F't(x) - Ft'(1O,xI) for

Ox1l. The measure it* depends on the arbitrary choice of the origin (zero

point) on C, but in a trivial way. Different choices of the origin lead to

measures g.' which differ only by a rotation.
If the measures p, and Ft2 are identical or can be made so by rotating

one of the measures, we shall write Ft, a Nt2 . For the discrete measures in

Section 2 it is easily seen that p. a SP(y) implies p" a PM(y) and similarly, p.

* PM(y) implies p* s SP(y). In general, ;t'* a p for all R.
It will be convenient to use the following notation. Let X and Y be

bounded random variables with distributions F and G respectively. If EI(X)

( EP(Y) for all convex functions ', we say that X A Y or equivalently F A G.

This type of ordering is well known and has many uses in queueing theory

(see Stoyan( 1983)). The ordering ' is closely related to the majorization

ordering 4. for vectors, hence the similarity in the notation.
The main result of this section is that inversion preserves the ordering

<<, that is,
C

(3.1) F ,((F2 if and only if F.1 (( F*2.

If we restrict ourselves to measures p. which have no atoms and have

support on all of C, we can restate (3.1) in a more concrete fashion. Under

this restriction, for any y cC and t E (0,1) we can define L(y,p,t) to be the

length of the unique arc A on C which has clockwise endpoint y and satisfies

F(A)-t. Let Yi be distributed according topF, for i-1,2. Then

(3.2) p.1 (( p2 if and only if L(Y,,p.1,t) A L(Y2 ,p2,t) for all t C (0,1).

The relation (3.1) becomes false upon replacing << by" See the
C V

discrete counterezamples at the end of section 2. However, something
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resembling (3,2) can be shown to hold for the ordering <. For any points

x.0y on C, define d(i.y) to be the length of the arc (I,y] having clockwise
endpoint x and counterclockwise endpoint y. When x-y, we randomize and
set d(xy)-0 or I with each value having probability 1/2. Note that
d(x.y)+d(y,x)-l unless i-y. Let X, ,Y, be independent with distribution IL
and X2 ,Y2 be independent with distribution N. We can show that

(3.3) p., << h if and only if d(X1,Y,) A d(X2 ,Y2 ).

Specializing this to discrete measures of the form SP(x) leads to the result
given in (2.4).

4. App tlc ons

This section contains some applications of the uniformity orderings <<
C

and " In the first two applications the orderings are used to give precise
versions of some fairly intuitive qualitative statements.

Suppose n arcs having arbitrary lengths b,b 2 ,...,b, are placed
uniformly and independently on C. Let A denote the covered region,

n

A - UlUiUi+bi)

i-I

where U1,U2 ....,U, are independent and uniformly distributed on C.
Intuition suggests that if V., is "more uniform" than h.2 , then the covered
mass p.(A) will be "less variable" than p2(A). We can indeed show that

(4.1) If p.i P 2, then Var(p.,(A)) < Var(p 2(A)).

Note that when n-I this statement follows immediately from the definition
of ((. Another result along the lines of (4.1) is

(4.2) If p - F2*p3 for some measure F,, then gl(A) A F2().

Remember that * denotes convolution. The condition p. - p2 'P 3 is much
stronger than R' IP2 (see result (1.5)).



The second application concerns the distribution of spacings and
higher order spacings. Let XIX 2 ....Xn be i.i.d. from the distribution IL.
Suppose X(1),X( 2).....X(,) are the points Xi arranged in counterclockwise

order beginning with X(1 ) a X1 . These points divide C into n segments
whose lengths (called spacings) are denoted SI S2 ...,Sn . To be precise we
take Si = d-X().X(i.)) with d as in (3.3) and X(n, 1)-X(1). Similarly, let
T1 ,T2 ....,T, be the spacings between n iid. points from the distribution P2 •

The "higher order spacings" are simply sums of consecutive spacings.
The properties of spacings and higher order spacings have been extensively
studied. For information and further references on this area see Pyke
(1965), Hoist (1979) and Guttorp and Lockhart (1988).

When p., is "more uniform" than R.2, it seems intuitive that the
spacings (and higher order spacings) under R.t will be "less variable" than
those under P2 . We can prove that

k k
(4.3) If R.2 <p2 ,then JS i ( JT i for I k<n-I.

i-I i.i

Our final area of application is the analysis of directional data. A basic
problem in this area is that of testing for uniformity: Does a given sample of
n observations look like it was obtained by random sampling from the
uniform distribution on C ? If the alternatives to uniformity have no
preferred direction, it is reasonable to use test procedures which are
invariant under rotations of the circle. Such an invariant procedure can be
described in terms of a test statistic (SiS2,...S) which is a function of the
consecutive spacings S1 S2 ..... Sn between the n data points; we reject the
hypothesis of uniformity when $ is sufficiently large. The book by Mardia
(1972) reviews many of the test statistics which have been proposed for
testing uniformity.

What functions # will lead to reasonable tests for uniformity?
Functions which are increasing with respect to << or (< are obvious

C V

candidates. Let z. and y belong to Sn . A function 4 v'ill be called moeaszAg
if #(z)<#(y) whenever SP(x)<<SP(y). A prefix of c or v will indicate
whether we refer to (< or <<. Clearly, any v-increasing function is also

C V

c-increasing. Using the results (2.2) and (2.4) we can easily show the
following:

(4.4) If 0 is a Schur-convex function of n arguments, then
(X) - (x()) is a c-increasing function for I < k < n- 1.
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(45) If 4) is a Schur-convex function of n(n-1 ) arguments, then
#(x) - 0((1),(2).(i-n)) is a v-increasing function.

See MarshaU and Olkin (1979) for information on Schur-convex functions.
Additional c-increasing functions may be obtained by taking various
combinations of the functions in (4.4); If V1, 12- ... are c-increasing
functions, then I+ 12+ -... +1. and max(y 1, V2, .. ) are c-increasng, etc.

We note that many of the proposed test statistics are indeed either c
or v-increasing. We shall use the nomenclature of chapter 7 of Mardia
(1972). This source contains definitions for all the statistics mentioned
below except for the scan test which is described in Naus (1966) and Cressie
(1977).

The following statistics are all .'-increasing: Kuiper's test, the range
test, the equal spacings test, Hodges-Aine's test and the scan test. These
statistics are all closely related so that in section 5 we shall discuss only two
of them: the scan test and Kuiper's test.

Cressie (1976, 1979) considers test statistics of the form

n

i- I

with emphasis on the cases h(u) - -log u and h(u) - u2 . According to (4.4), a
statistic of this form will be c-increasing whenever h is convex.

Examples of v-increasing statistics can be found in the general class of
tests for uniformity developed by Beran (1968, 1969). These test statistics
can all be rewritten in the form

OW"-f)
Bn(x) - k + h(yi ) for some constant k and function h,

i-I

where yi are the components of the vector ,

According to (4.5), the function B. will be v-increasing whenever h is

convex. Using this result we can show that both Watson's U!. test and Ajne's

An test are v-increasing. See the discussion on pages 190-192 of Mardia's
book.

The Rayleigh test is an example of a test statistic which is not
c-increasing; counterexamples are easy to construct. This is to be expected
because the Rayleigh test is intended only for use in detecting unimodal
alternatives to uniformity and is not sensitive to many other forms of
nonuniformity.
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5. Profs

Porar (U1.1). We note that

E D(Ii,b) - f(JIi.i1b)di)dx

where 4It.1-b) is the indicator function of the given interval and both
integrations are over all of C which is identified with 10,1) using addition
modulo one. Interchanging the order of integration yields (1.1).

Proxaf (1.2) is immediate.
Proof a[ (1 .3). Because of (1 .2), it suffices to prove (1 .3) for the

ordering <<. In terms of the ordering ( introduced in Section 3, we must

show that D(,,b) ( D(i b) ( D(SXb) for all t and b. The extremal
distributions of the ordering m are well known (see Example 1.9(b), page 25
of Stoyan (1983) ) so that this result follows from (1.1) and the
accompanying discussion.

Prof(t (1.4) is immediate.
Proe'" (1.5). Again, by (1.2) it suffices to consider only <<. To

simplify the presentation we carry out the proof only for measures t which
are discrete with finitely many atoms. In this case (1.5) follows easily from
(1.7) which is proved later. Suppose k has atoms of mass Pi at the points xi
for I I i I n. Define the measure it by i(B + r i ) - i(B) for all measurable B

contaiaed in C. Then Ri4 - liRi and R, <i for all i. Now using (1.7)

completes the proof.
~ a'i" (1.6). Again, it suffices to consider only<. We shall firstc

restate the definition of << in a slightly different form. For the measures IitC

and h2 and 8 c (0,1/2) we define functions f1, by f1j(x) - R,([x-8,x+8]). Now

(5.1) P1 (( h if and only if f, 8 (U) A f2,,(U) for all 8 c (0,1/2)

where U is uniformly distributed on C.
Using the assumptions in (1.6), it is straightforward to show for all

8 c (0,1/2) that fl 8 is symmetric and unimodal and
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f ,a(u)du < J f2,(u)du for 0 <x < 1/2
-X -I

For any function g on C, let * denote its decreasing rearrangement. With
m(y) equal to the Lebesgue measure of the set (x: g(x) ) y) , we can define
(u) -sup(y: m(y) ) u) for 0 < u < I. Clearly

J t,18(u)du - IJf (u)du Jf281(U)dU J f2A(u)du
0 x 0

for 0 < x < 1/2. Therefore, using a result of Hardy, Littlewood and Polya

(see page 15 of Marshall and Olkin (1979)), we conclude that

f,S(U) A f2,8(U) as desired.
Proar (1.7). We shall consider first the ordering <<. Fix a value of

b and let Xi - D(i,b) for I < i < n and Y - D(p,b). Then

D(iPivi ,b) - ipiXi.

Let 41 be any convex function. We know that EY(X i) < EY() for all i

because pi << p.. Jensen's inequality now yields

EV( Tipixi ) i EV(Y

which completes the proof. The argument for << is the same except that we
V

need consider only the function IFU) - x
Aro 'f (1.8). The following fact is needed in the proof. Let W and Z

be arbitrary bounded random variables and T be any convex function
having a continuous second derivative.

(5.2) Elf(W) <EM(( -P)W+ Z) for all c10,1) if andonlyif
EI(Z-W)T(W)i _ 0O.

This fact is proved by taking expectations in the inequalities

,(W) + p'y'(W)(Z-W) < t((l-p)W + pZ) ( V(W) + p?"(W)(Z-W) +KP2 .

The first inequality is a consequence of the convexity of T. The second
inequality is just the Taylor series with the remainder term replaced by an
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upper bound. Let B denote the bounded set in which W and Z take values.
We can choose K to be any value greater than sup{ Yiu): u c B).

We shall prove (1.8) only for the ordering <. (The argument for << is
V

identical except that we consider only the function T(x) - 12 .) Let Xi and Y
be as in the proof of (1.7). We must show that E?(Y) < E (jpijXi) for all

convex functions T. It suffices to verify this for smooth convex functions
(having continuous second derivatives) because any convex function can be
approximated arbitrarily well by a smooth one. Using (5.2) and

<(I-+)p+ ipq for 0<< 1 we obtain E1(Xi-YIW'(Y)) > 0 for all i. Thus

E-(( pXi)-Y)P '(Y)l 10
and applying (5.2) leads to the desired conclusion.

SPr (2.1) is immediate from result (3.) proved later.
-rodr"r (2.2). We need some preliminaries. For any vector w -

(wl,w 2 .... w) we define F(w) to be the distribution on R which places mass
1/n at each point w, so that

Sin

It is well known (see page 17 of Marshall and Olkin (1979)) that

(5.3) v _ w if and only iF(v) FA (w).

Now to the proof. We shall use (2.1) and show instead that

PM(x)<<PM(y) if and only if x(k) y(k) for I < k < n-l. We shall use L to
C

denote equality in distribution. It is easy to see that

(5.4) D(PM(x), k/n) L F(x(k) 1 for 0 1 k i n.

Using (5.3) and (5.4) leads to

D(PM(x),k/n) A D(PM(y),k/n) for all k if and only if x(k) - y(k) for all k.
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It remains to show that 1(k) < y(k) for all k implies

D(PM(x),b) A D(PM(y),b) when b - i/n for any integer i. This follows by

observing that

(5.5) If b - (i/n)+ (-)((i+l)/n) with 0 (1 ' I and 0 _< i < n-I,

then D(PM(z),b) & AF(x())+ (l)F(x('-n)).

A-af (2.3). Using (.1) we see that PM(x) <<PM(y) if and only if

ED2(PM(x),b) < 1EDl(PM(y),b) for all b. From (5.4) we obtain

ED2(PM(x),k/n)- 2'((k)12
i-l

Combining this with (5.5) leads easily to the proof.
/A'ooa' (2.4). This result follows from (3.3) after noting that if X and

Y are independent random variables on C with the same distribution L, then
the distribution of d(XY) is

n-1. 0(- )) +. (O )

PrftV (3. 1). We shall need some elementary facts concerning the

ordering . If the random variables X and Y satisfy EX - EY then,

(5.6) X Y if and only if E(X-s), 1 E(Y-s)+ for all s,

and similarly
XMY if and only if E(s-X) < E(s-Y). for all s.

See Stoyan(1983), pages 8-12. Here we have used the notation (z) .
max(z,O).

The result (3.1) follows immediately from the formula

(5.7) E(D(l,s)-t). - E(s-D(R*,t)), .

The argument (using (5.6)) is

iff E(D( 1,s)-t), < E(I 2,s)-t) for all sand tin (0.1)
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iff E(s-D(it,t)). < E(s-D( itt)), for all s and t in (0,1)

We now prove (5.7). Let * denote convergence in distribution. For

distributions on C this has the usual meaning; it L F if pa(l) -. t(I) for all

intervals I on C whose endpoints are not atoms of I. It is straightforward to

check that h + F implies t IL4 LI and D(i,s) L D(t,s) for all s. Thus

both sides of equation (5.7) are continuous with respect to convergence in
distribution. This implies that, in proving (5.7). It suffices to consider

measures F which have no atoms and have support on all of C ; any

probability measure on C can be approximated arbitrarily well by a member
of this class. In the argument which follows we restrict It to be a member of
this class.

Identify C with 10,1). Define F and F" by Fx) - F((0,xI) and F*(x) -
p*(10,xi) for all I E 10.1). The assumption on I implies that F is invertible so

that F- I - F*. We shall regard F and F" as one-to-one mappings from C onto
itself. Let V and W be independent random variables uniformly distributed

on C and consider the random arcs [V,V+sI and [W,W+t. Since F- I - F" we
have

(5.8) P( [F(V),F(V+s)I : (W,W+tI } = P{ IV,V+s D [F(W).F(W+t)I .

This formula is in fact true for all probability measures F., but the argument
requires more care.

Consider the left hand side of (5.8) and condition on the value of V.

Clearly P{ IF(V),F(V+s)I D [W.W+tl I V) - (L-t). where L is the length of the

interval IF(V),F(V+s)]. Note that L - I.(IV,V+sI) - Dp,s). This leads to

Pj IF(V),F(V+s)] [W,W+tI ) - E(D(ps)-t),.

If we condition on the value of W in the right hand side of (5.8) and use a
similar argument we find that

P{ IV,V+sl [F*(W),F'(W+t)] IEs-l(p*,t),.

This completes the proof.
ProWa (3.2). Let us reexamine the right hand side of (5.8). Define Y

- F*(W). Note that Y is distributed according to F. and that p((FO(W),F*(W+t))
- t. Thus, by the definition which precedes (3.2), the length of
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[F*(W),F*(W+t)] is L(Y,ILt). ItIs means that Lae right hand side of (5.8)
equals E(s-L(Y...t)), so that (5.7) can be rewritten as

E(D( ,s)-t)+ -E s-L(YIpt)), where Y is distributed according to pI.

The proof is now completed by applying (5.6) as in the proof of (3.1).!aTra~ (3.3). Suppose that X and Y are independent with the same
distribution I. We first note that Ed(XT) - 1/2. This is true even when I. has
atoms, but in this case our convention regarding ties (d(z)- 0 or I with

equal probability) is crucial. Ed(X,Y)-I/2 is a consequence of d(X,Y) d(Y,X)
and d(X,Y)+d(YX)-I when XOY.

Next we note that

(5.9) ED2(it,s) - 2Es-d(X,Y)), for all p.

We shall prove this only for ji which have no atoms and have support on all
of C. (The proof for general p. can then be obtained by a limiting argument.)
Go back to (5.8) and replace t by a random variable U which is uniformly
distributed on (0.1) and independent of V and W. Now W and W+U are
independent and uniformly distributed on C so that F*(W) and F*(W+U) are
independent with the distribution F.. The length of [F*(W),F*(W+U)] is thus
d(X,Y) with X - F'(W) and Y - F*(W+U). Repeating the argument in the
proof of (5.7) now yields E(D(Qs)-U)+ - E(s-d(XY)),. Because

I(x-u),du _X2 /2 for 0 < x I
0

we have E(XI,s)-U). - (ED2(p,s))12 and the proof of (5.9) is complete.
Using (5.9) we see that ED2(1L1,s) < ED2(p2.s) for all s if and only if

E(s-d(X,,Y,)), < E(s-d(X2,Y2)), for all s. Now (1.1) and (5.6) lead us
immediately to (3.3).

cafi" (4.1). First note that *I(A) -4 2(A). This follows from
Fubini's theorem which gives

E(A) - JP(U CA)d(z)
C
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and the fact that the distribution of the random set A is rotationally
invariant. From the equality of means we see immediately that

Var(R,(A)) s Var(N(A)) if and only if E(lB-p(A))2 s E(l -, (A)9.
Using I -1(A) - R(Ac) (with c denoting complement) and Fubini's

theorem we obtain

(5.10) E(I-tL(A)) 2 
- J P-xcAC.'yAC)dL(x)dp,(y).

cc
Define 1i - [Ui.Ui+bi) so that A is the union of 2 1 ,1 2 ..... 2n. The intervals

i re independent so that

P(X CAC,y EA") - I l c.y €8B)

i-l

where it is easily seen that

P(x c i ,y c ) - (d(x,y)-b i ), + (l-d(x,y)-b i ).

Thus (5. 10) can be rewritten as E(l-IL(A)) - E9"(d(XY)) where X and Y are
independent with distribution ' and

9"(z) - fl[(z-bi). +( -z-bi).].
i-l

It is straightforward to show that 'F is convex so that (4. 1 ) now follows from
result (3.3).

~fa (4.2). To simplify the presentation we carry out the proof
only for measures L3 which are discrete with finitely many atoms. Suppose

R3 has atoms of mass p, at the points x, for I < i < n. Then

p1(A) - Z.P 1iL 2(A-Xi)

so that
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If(R,(A)) _I ZipMIYA- d))

holds for any convex function V. Now taking expectations and using the
rotational invariance of the distribution of A leads to EQL.I(A))< E,(IL(A))
as desired.

~rof" (4.3). We shall prove this only for p.L,F 2 which have no atoms
and have support on all of C. Let Ua,U 2 ..... U be ad. uniform on C.
Suppose U(1 ),U( 2 ) .....U(,) are the points Ui arranged in counterclockwise
order beginning with UI-U(I) . Identfy C with 10,I) and define Fi by Fi(x) -
p,(0,x)) for i - 1, 2. Now define the dual meaures Fl and ILl on C by

pF (10,x)) = Fi (x). The points F 1 (U1),F'i(U 2) ..... Fi1(U.) are i.i.d, from the

distribution Fi so that we have

k k
IS i =_ .IQ(U(l),U(kol))) and JT i = IL([U(l).U(k.1))).
i-i i-I

Let B - IU(1),U(k+.)). Conditional on its length, B is just a uniformly placed
random arc on C so that li(S) ( p(S) follows immediately from (3. 1). This
completes the proof.

StaiAscsfor testing uniormity. We now show that the scan statistic
and Kuiper's statistic are c-increasing. Let s - (sIs 2 ....sn) be the vector of
consecutive spacings between n points on C and let N(x,b) denote the
number of points on C contained in the interval (xx+b). The scan statistic
N(b) having width parameter b is defined as N(b) - sup N(x,b) with x

ranging over C. The scan statistic has an obvious relationship with the
higher order spacings;

N(b) _ k+ l if and only if min s:) b

if and only if max s(Q-k) > I-b,
I

The function *(xtx2 ..... xfl) - max x, is Schur-convex so that (4.4) impliesi
the function *(s) - max s(f"k} is c-increasing which in turn implies that the

scan statistic is c-increasing.
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Now we consider Kuiper's test. Choose an arbitrary zero point on C

and identify C with the interval 10,I). Let Y(j),Y(2)....y(,) be the order
statistics of the n points in our sample. Kuiper's test statistic Vn may be
computed using the formula

Vn - JI+ Ml (Ym-i-in (Y(i) -)

See page 174 of Mardia( 1972). By arguing as in Section 4 of Cressie (1977),
it is straightforward to reexpress Kuiper's test in terms of the spacings as

(511 .i, I + ax MI(s -)(k))
S k i

1 1 1 1

where s-I denotes the vector (s, -, 32-a ... sn -;) The function inside

braces in (5.11) is c-increasing by (4.4). Now, since the maximum of
c-increasing functions is again c-increasing, we see that Vn is c-increasing as
desired.
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